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1 Introduction

In this paper, we present an adaptation of the Markov 
random field image segmentation model for extrac-
tion of giant unilamellar lipid vesicle shapes from 
micrographs.

Artificial lipid vesicles, including giant unilamellar 
lipid vesicles (vesicles) offer a simple biological system 
with which to study interactions between nanoparticles 
and biological membranes (Drobne et al., 2009; Zupanc 
et al., 2010a; Barauskas et al., 2010). Transformations of 
the shapes of vesicles are frequently used as parameters 
in research on the interactions between lipid membranes 
and various agents. Different authors report that in the 
presence of agents or if external conditions such as tem-
perature or osmotic pressure are varied, vesicles undergo 
distinct shape changes from one class of shapes to another 
(Hong et al., 2006; Peterlin et al., 2009). It was shown that 
nanoparticles also interact strongly with cell membranes 
(Imparato et al., 2005; Liu et al., 2008; Valant et al., 2009) 
and that vesicle morphological transformations can also 
be affected by nanoparticles (Zupanc et al., 2010a).

In studies on the transformation of the shapes of lipid 
vesicles, vesicles are most often observed singly (Pecreaux 
et al., 2004; Gruhn et al., 2007; Leirer et al., 2009). In such 
studies one vesicle is chosen and isolated, and its mor-
phological behavior is recorded. To extend this research, 
we proposed a population-based approach, in which 
thousands of vesicles are recorded (Zupanc et al., 2010a) 
and their morphological changes are analyzed. Because 
manual segmentation of such a large GUV quantity is 
extremely time consuming we developed an automated 
segmentation approach. To segment the vesicles, we 
selected a Markov random field model (MRF), a fre-
quently applied model in image interpretation processes 
(Li, 2009). In MRF, classification of a particular pixel in 
the image is based on the classification of neighboring 
pixels rather than on the pixel intensity alone. For exam-
ple, to segment the image into two classes, foreground 
and background, an MRF model for spatial interaction 
between pixels will cause the pixels with neighbors clas-
sified as foreground also to be classified as foreground 
with greater probability. This exploitation of a priori 
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models of spatial interaction between image pixels can 
compensate for deficiencies in observed information, 
and is also applicable in the case of vesicle segmentation 
from micrographs. Our adaptation of the MRF model is 
particular for the case of vesicles, as the vesicle halo is 
used to segment the vesicles with greater accuracy.

The aim of this work was to propose an automated seg-
mentation of multiple vesicles from single micrographs, 
replacing hours of manual segmentation with seconds 
of computer processing. We discuss the advantages of 
this automated segmentation and its applicability to 
micrographs with various characteristics such as blurred, 
micrographs with noise, and variable lighting intensity. 
Moreover, the automatic segmentation is tested on thou-
sands of vesicles and the results are compared to those 
manually segmented.

2 Lipid vesicle segmentation

2.1 Previous work
A typical vesicle, observed at 400x magnification with 
a phase contrast light microscope, can be recognized 
as a dark spherical region, surrounded by a bright halo 
(Figure 1). When gray level intensities in the two differ-
ent regions of the vesicle are compared, the following 
differences can be observed. The darkest regions of the 
micrographs are the vesicles, the brightest regions are 
the vesicle halos and both intensity distributions are 
wider than the intensity distribution of the micrograph 
background (Figure 2). However, in order to use direct 
approaches and segment the vesicles by direct inten-
sity thresholding, the intensity distributions should not 
overlap. In this case, this is not so, and more advanced 
segmentation approaches are necessary.

In published research, several methods for lipid 
vesicle segmentation have been proposed. A standard 
approach is to exploit the high gray level intensity regions 
of the halo to extract its contour by using an edge detec-
tor (Peterlin et al., 2009). Manually selected points within 
the vesicles have also been used as origins of a polar 
coordinate system from which a series of radial rays 
pointing towards the phospholipid membrane are gen-
erated. The profiles of image intensities, projected along 
the rays, contain distinctive patterns that result from the 
halo effect (Pecreaux et al., 2004; Usenik et al., 2010). Both 
approaches are adequate for segmenting single vesicles 

from micrographs, but fail when multiple vesicles are 
present. For such cases, we previously proposed a two 
tier detection system. In the first tier, thresholding and 
morphological operations are applied to acquire regions 
where the vesicles are present. In the second tier, a fine 
vesicle border detection is applied with the usage of the 
determinant of the Hessian of intensity values at every 
pixel (Zupanc et al., 2010b). Although this method works 
well in most cases it fails where intensity of a vesicle var-
ies. In such situations, the algorithm splits a single vesicle 
into two, each with more homogeneous intensity.

2.2 Markov random field segmentation
In general, image segmentation can be described as 
assignment of class labels to individual pixels of the 
image, the goal being to divide the image into distinct 
regions (Held et al., 1997; Kato et al., 2006; Alomari et al., 
2008; Li, 2009). Pixels of each region share some kind of 
similarity, involving for example, proximity and intensity 
levels, which must be quantified and incorporated into 
a model that assigns each pixel to a region. Using the 
Bayesian approach (Geman et al., 1984), we assume a set 
of observed (Y) and a set of hidden (X) random variables. 
The observation FϵY represents low-level features of the 
image, in our case grayscale intensity, and the hidden 
ɸϵX represents the segmentation.

If the probability distribution P(F|ɸ) is the imaging 
model and P(ɸ) is a prior distribution, the Bayes theo-
rem gives the posterior distribution P(ɸ|F) ∞ P(F|ɸ) P(ɸ). 
We are interested in ɸ* which maximizes the posterior 
estimate of the hidden field X. When the above distribu-
tions are functions of certain parameters gathered from 
the training set, this is called supervised segmentation.

Since many low and high level computer vision prob-
lems can be formulated as Bayesian labeling, a MRF 
modeling approach is very appropriate (Li, 2009). The 
class of each pixel p is specified by a class label ɸ

p
, which 

is a discrete random variable having values in ψ={1,2,…., 
T}. The set of labels ɸ={ɸ

p
|pϵP} is a random field termed 

the label process (Kato et al., 2006). The features from the 
observed image are a realization F={f

p
|pϵP} from another 

random field, which depends on the label process ϕ. The 
image process F is a sort of manifestation of the label 
process. We assume that the image process is a noisy ver-
sion of the underlying label process, which we want to 
identify. The aim is to find a labeling ϕ* maximizing the 

FIGURE 1.  A vesicle extracted from a micrograph (right) and an intensity gray level value plot (left) of a cross section of the same vesicle, 
marked with the horizontal line in the image of the vesicle. On the vertical axis, 0 is the black intensity, and 255 is the white.
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posterior probability P(ϕ|F), which is the maximum of a 
posteriori (MAP) estimate:

  


* arg max ( (=
Φ

P F P) )

 where ϕ is the set of all possible labelings. The label pro-
cess ϕ is modeled as a Markov random field. P(ϕ) follows 
the Gibbs distribution
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 where Z is the normalizing constant and V
c
 is the clique 

potential of clique Cϵc with the label ϕ
c
. C is the set of 

second order cliques or doubletons, which correspond to 
pairs of neighboring pixels. The potential must be such 
that it favors equal classes for neighboring pixels:
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 In this way, the more homogeneous the segmentation 
solutions, the higher are their associated probabilities.

We assume that our features (grayscale intensities) f
p
 

for a given class ψ are normally distributed around the 
mean vector μψwith σψ as standard deviation
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 for each pixel class ψ∈Ψ. Since the features are assumed 
to be independent (Kato et  al., 2006), the probability is 
the product
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 The posterior probability P(ϕ|F) has two terms: double 
clique potentials (due to P(ϕ)) and singleton potentials 
(due to P(F|ϕ)). The former models the context of neigh-
boring pixels, while the latter corresponds to modelling 
the labels without context. P(ϕ|F) without the normal-
izing constant is
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 where β is a weight regulating the relevance of the prior, 
β >0. The singleton potentials are
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 The maximum a posteriori estimation corresponds to the 
following energy minimization

 


* = arg min )U( , F

 The segmentation problem thus becomes the opti-
mization of the function U(ϕ, F). In our case, this was 
performed with the iterated conditional modes (ICM) 
algorithm (Besag, 1986).

2.3 Markov random field adjustment for segmenting 
lipid vesicles
To segment the vesicles, we divide the micrograph pix-
els into three regions (T = 3): the vesicle, the halo, and 
the background. Figure 3a shows a part of the micro-
graph where multiple vesicles are present before it is 
segmented. After the micrographs are segmented, the 
three segmented regions can be observed in Figures 3b 

FIGURE 2.  The probability density functions of gray level 
intensities for all three regions - the vesicle, the halo, and the 
background.

FIGURE 3.  (a) Original image, (b) segmented image without correction (MRF), and (c) segmented image with correction (MRF2).
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(standard MRF) and Figure 3c (our improved MRF2). 
As shown in Figure 3b, the MRF segmentation model 
presented in previous section does not succeed in seg-
menting the vesicles. Even though the vesicle halo and 
background regions are segmented correctly, the vesicle 
inside is classified as background in some cases.

Here we present a correction mechanism for the image 
segmentation model, allowing a correct segmentation of 
the vesicles (the result is presented in Figure 3c). This is 
accomplished by adding an additional potential function 
(PF) to the function U(ɸ,F). The PF is in the following form:

PF p p( , , ) , ) )
{ , }
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The term p
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p
. The complete 

function to optimize is now U
2
=U + PF.

The explanation of the function PF is the following. 
One would like the background pixels (label 1) which 
are surrounded by the pixels classified as vesicle (label 
2) and the halo pixels (label 3) to be more likely to turn 
into pixels of the vesicle (label 2). This is the situation 
where the classification error of the original MRF is the 
highest (Figure 3b) as the vesicle pixels are falsely clas-
sified as the background pixels. Let the label 1 mark the 
background pixels, 2 the vesicle pixels, and 3 the halo 
pixels (Table 1).

The function  ( p
− , )1  reflects the fact that the pixel 

p was previously marked as background (label 1), and 

 ( p , )2  reflects the fact that the pixel p is now a candidate 
for the vesicle pixel (label 2). When neighboring pixels of 
a background pixel have labels 2 and 3, the sum of the 
label values is high, and when it reaches the predefined 
threshold Θ, the background pixel turns to a vesicle 
pixel. The interior of the vesicle is filled in this way com-
pletely. The parameter γ is the weighting parameter con-
trolling the importance of the term PF in the context of 
the complete energy function. The MRF algorithm with 
this correction mechanism will be denoted as MRF2 in 
our experiments.

3 Experiments and results

3.1 Vesicle segmentation in synthesized images
First, the proposed MRF2 segmentation is tested on 
synthesized images of vesicles. These are generated 
with Matlab and resemble the actual vesicles of sizes 
5-20 µm when recorded at 400x magnification with opti-
cal microscopy (Figure 4). As an input, both MRF seg-
mentation models require mean values and standard 
deviations of all regions’ gray intensity levels. These are 
gathered from the vesicle images (Figure 4b) by using 
the template image (Figure 4a) as a mask to extract 
intensities of points from a single region. The segmen-
tation of synthesized images is performed to test both, 
the MRF and MRF2, algorithms segmenting images 
of different qualities (blurred and noisy). Also, as the 
images are generated from certain parameters, the 
ground truth label boundaries are known (Figure  4a) 
and can be used to assess accuracy of the MRF seg-
mentation compared to the desired result. In order to 
create different image characteristics, the synthetic 
image is distorted by first applying a smoothing filter 
and then adding noise. Smoothing is performed with 
the Gaussian filter of 7 × 7 pixels, and noise addition is 
simulated by adding a random matrix with uniformly 
distributed values to the image. To obtain results with 
different image characteristics, the standard deviations 
for the Gaussian filter are set to σ = 1, 3, 5, 7, 9, and the 
noise matrix is multiplied by 0.005, 0.01, 0.02, 0.03, and 
0.05. The results from the segmentation of the synthetic 

FIGURE 4.  (a) The template for synthetic vesicle preparation, (b) synthetic vesicle model, (c) synthetic vesicles segmented with basic MRF 
(at σ = 5, noise = 0.02), and (d) synthetic vesicles segmented with our MRF2.

TABLE 1.  Labels for background, vesicle, and halo.
label element color in segmented images
1 background gray
2 vesicle black
3 halo white
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images with all standard deviations and noise levels are 
presented in Figure 5b and 5c.

The misclassification rate (segmentation error) is 
recorded during each iteration of the ICM algorithm 
and is much lower with MRF2 than with MRF (2% vs. 
12%) after 20 iterations (Figure 5a). The percentage 
reflects how many pixels of each micrograph were cor-
rectly segmented as one of the three regions. Figure 5b 
shows the dependence of the segmentation error on the 
smoothing parameter σ. With both algorithms, the seg-
mentation error increases with σ, however, the MRF2 
method at largest smoothing level (σ = 9) still outper-
forms the MRF method at the smallest smoothing level 
(σ = 1). Figure 5c shows how the noise level influences 
the segmentation accuracy. Even though the MRF 
accuracy is reduced to a 50% classification error, the 
proposed MRF2 is not susceptible to increased noise 
and achieves only 5% error rate in images with the most 

noise. Results obtained with the MRF2 segmentation 
in Figure 3c show that all the vesicles were segmented 
successfully. The segmentation obtained with the 
original MRF (Figure 3b) is unsuccessful in filling the 
insides of the vesicles. The heuristics for MRF2 are set 
to γ = 2 and Θ = 6. These values are optimal and are used 
for this and all subsequent examples. The parameter β 
of the energy function U was set to 2 after testing for an 
appropriate value.

3.2 Vesicle segmentation in micrographs
Next, we manually segmented two micrographs with 15 
vesicles (Figure 6) and 10 vesicles (Figure 7), and compared 
the segmentation accuracy of the MRF and MRF2 algo-
rithms. In both cases, MRF2 provides superior accuracy 
(1% error compared to 4% error, Figure 8). The mean values 
and variances of intensity levels for each of the three regions 
were obtained from multiple manually labeled micrographs 

FIGURE 5.  (a) Segmentation error of both segmentation models dependent on iterations, (b) segmentation error due to varying smoothing 
parameter σ, and (c) segmentation error due to varying noise level.
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(presented in Figure 2). The main difference that can be 
observed in both examples is that the MRF2 completely 
filled the vesicle insides while the MRF algorithm filled 
them only partially. The results in Figure 8a and 8b show the 
error rate of each algorithm after each iteration of the ICM 
algorithm. The MRF2 image segmentation model reached 
the final accuracy after 7 iterations in both cases while the 
error rate of the MRF stopped decreasing after 15.

3.3 Segmentation usage in a vesicle population 
experiment
The main strength of the proposed MRF2 is in seg-
mentation of multiple instead of single vesicles. Such 

automatic segmentation finds usage in vesicle popula-
tion studies (Zupanc et al., 2010a, 2011) where manual 
segmentation of vesicles is currently most commonly 
employed. As the quantity of vesicles in these experi-
ments can amount to tens of thousands, manual 
segmentation is cumbersome and extremely time 
consuming.

One such experiment was conducted in our previ-
ous research (Zupanc et  al., 2011), where microscopy 
video sequences of vesicles incubated in three different 
suspensions were recorded and each video sequence 
of an investigated area was stitched into a mosaic, a 
large image representing the whole area recorded. The 

FIGURE 6.  (a) Original image of the vesicles, (b) manually segmented image with three classes - background, halo, and vesicle, (c) original 
image segmented with basic MRF, and (d) original image segmented with our MRF2.

FIGURE 7.  (a) Original image of the vesicles, (b) manually segmented image with three classes - background, halo, and vesicle, (c) original 
image segmented with basic MRF, and (d) original image segmented with our MRF2.
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vesicles were then manually segmented from the mosa-
ics and their sizes and shapes were evaluated. In short, 
the experiment was used to assess the effect of CoFe

2
O

4
 

nanoparticles on the population of vesicles. Three ves-
icle populations were examined. The first was exposed 
to neutral CoFe

2
O

4
 nanoparticles (CF), the second to 

negatively charged citrate-coated CoFe
2
O

4
 nanoparticles 

(CF-CA) and the third population was left unexposed 
and used as a control (C). The duration of exposure in all 
three cases was 90 minutes, and the three populations 
were recorded immediately after exposure and again 
after 90 minutes.

First, we use the mosaics from the described experi-
ment to test the proposed MRF2 and compare it to the 
manual segmentation, focusing on the time required and 
the segmentation accuracy. All together, 6 mosaics were 
investigated, each containing between 800 and 2200 
vesicles. The time required for manual segmentation var-
ied from 5 to 10 hours per mosaic, averaging at 8 hours 
(Figure 9b). All together, a single experiment (6 mosaics) 
required 1 week of an operator’s labor.

On the other side, the proposed MRF2 algorithm 
requires almost no human involvement. The algorithm is 
set to over-segment the mosaic preferring false positives 

FIGURE 9.  (a) The vesicle quantities in each of the six mosaics according to the manually labeled, automatically segmented (MRF2) or 
automatically segmented with minor corrections by the operator (MRF2+). (b) Hours of the operator’s time required for each of the three 
approaches.

FIGURE 10.  A legend representing the observed vesicle types: spherical vesicles (a majority), and nonspherical vesicles, where more 
specifically the pears (three representatives), and pearls (right) were observed and analyzed. The upper row represents the vesicles as they 
appear in the micrographs. The bottom row represents the vesicle masks as they appear after being segmented manually or by the MRF2+ 
algorithm.

FIGURE 8.  Segmentation error of both, MRF and MRF2 algorithms on (a) Figure 6 and (b) Figure 7.
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over false negatives. After the automatic segmentation, 
the acquired segmented mosaics are checked by the 
operator who:

deletes the false positive vesicle labels,•	
adds vesicle labels for vesicles missed by the auto-•	
matic segmentation,
identifies nonspherical vesicles and labels them with •	
distinct colors (Figure 10).

This way, one can rely on the results obtained combin-
ing MRF2 automatic segmentation with minimal human 
involvement (MRF2+). Identifying and labeling the non-
spherical vesicles (approximately 15% of the population) 
with distinct colors, allows analyzing the frequencies of 
their occurrences in the populations. In the case of the 
CoFe

2
O

4
 experiment, the two observed nonspherical 

types of vesicles were the pears and the pearls vesicles 
(Figure 10).

The vesicle quantity obtained with all three approaches 
are presented in Figure 9a, where quantities of vesicles 
detected in each of the 6 mosaics by manual segmenta-
tion are compared to the detected quantities by solely 
MRF2 algorithm or the MRF2 algorithm with the opera-
tor’s corrections (MRF2+). As expected, the MRF2 over-
segmented the mosaics in 5 out of 6 cases. Moreover, the 
operator’s time requirement for corrections was below 
1 hour per mosaic on average, allowing completion of 
the manual labeling of all six mosaics in less time than 
previously required for a single one. All together, the 
time required for analyzing data after such experiment 
was decreased more than eightfold compared to the 
solely manual segmentation. All mosaics were checked 
by a second operator afterward and the MRF2+ was 

confirmed to be the best approximation of the ground 
truth. The accuracy of the MRF2+ segmentation also 
enabled an analysis of spherical vesicle diameter sizes. 
The mean diameter of the spherical vesicles in the con-
trol population (C) decreased from 6.5 µm to 6 µm after 
90 minutes of incubation, while the mean diameters in 
the CF and CF-CA populations increased to 8.1 µm and 
8.5 µm, respectively (Figure  11a). Frequency of occur-
rences of nonspherical vesicles was also observed. All 
together, the nonspherical were up to three times more 
likely to appear in CF and CF-CA exposed populations 
than in the C population (Figure  11b). The differing 
occurrence of pearled vesicles was especially notice-
able (Figure 11c). In the CF-CA population, their occur-
rences were ten times greater than the occurrences in 
the C population.

4 Experiments and results

The MRF image segmentation model was used to detect 
and segment numerous giant unilamellar vesicles from 
synthesized images, micrographs, and mosaics from an 
actual experiment. The results of this segmentation are 
the first step towards an automated shape analysis of 
populations of vesicles. As described elsewhere (Zupanc 
et  al., 2011), populations of vesicles were exposed to 
nanoparticles and shape transformations of the vesicle 
membranes were observed by recording micrographs 
of lipid vesicles before and after incubation with nano-
particles. Subsequently, the shapes of lipid vesicles 
were manually segmented from the micrographs and 
quantified. In this paper, we propose an MRF image 
segmentation model allowing automatic segmentation 
of multiple vesicles from micrographs. To improve the 

FIGURE 11.  Mean diameter size of spherical vesicles for each experimental population (above), number of nonspherical vesicles per 100 
vesicles (left), and number of pearled vesicles per 1000 vesicles (right).
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separation of the vesicles from the background, we clas-
sify the micrograph pixels into three classes, termed: 
vesicle, halo and background. As intensity alone does 
not carry enough information to separate the regions, 
we adapted the neighborhood interactions model of the 
MRF to incorporate information about proximity of the 
pixels to each class. Such addition improves the MRF 
image segmentation model so that it is able to classify 
a majority of pixels which are surrounded by the pixels 
labeled as a halo, as the vesicle insides, which was not 
possible before. When using the original MRF image 
segmentation model, vesicles tended to be filled only 
partly. This problem is corrected with our adaptation 
and the proposed MRF2 model segments the vesicles 
with improved accuracy.

The proposed MRF2 segmentation model was tested 
on actual micrographs and its accuracy compared to 
accuracy of the MRF model without adaptation. Pixel 
classification error for the vesicles was 12% without 
and 4% with our adaptation. The modified MRF model 
also gained greater classification accuracy on synthetic 
noisy and blurred images. In the comparison with the 
manual segmentation on an actual experiment with 
thousands of vesicles, the proposed segmentation 
requires eightfold less time of an operator, allowing 
more experiments to be conducted and analyzed in 
less time.

The MRF2 segmentation model was also tested on an 
experiment with vesicles and Cobalt-ferrite nanoparticles. 
After 90 minutes of incubation, the nanoparticle exposed 
vesicles on average had a larger (8.5 µm) diameter than 
the unexposed ones (6 µm). Besides the diameter of the 
spherical we also observed nonspherical vesicles, which 
were more likely to appear in the exposed populations, 
especially the pearled vesicles, whose occurrence was 
ten times greater than in the control. This way, we show 
the applicability of the method for distinguishing vesicle 
populations (quantities, sizes) in experiments where 
vesicle changes are observed not on isolated vesicles but 
on large vesicle quantities instead.

In the future, this image segmentation model will be 
used to segment vesicles in multiple experiments regard-
ing shape changes of vesicles due to variety of conditions 
including drugs, temperature, electric field, and nano-
particles. Also, the algorithms will be made available on 
the web for other lipid vesicle research groups to use in 
their experiments. To conclude, the proposed automatic 
segmentation method, in seconds of computer time, 
replaces hours of manual segmentation by experts, and 
offers a convenient and fast procedure to analyze popu-
lations of lipid vesicles.
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